Identification of small-molecule inhibitors of ricin and shiga toxin using a cell-based high-throughput screen.

نویسندگان

  • Paul G Wahome
  • Yan Bai
  • Lori M Neal
  • Jon D Robertus
  • Nicholas J Mantis
چکیده

The Category B agents, ricin and shiga toxin (Stx), are RNA N-glycosidases that target a highly conserved adenine residue within the sarcin-ricin loop of eukaryotic 28S ribosomal RNA. In an effort to identify small-molecule inhibitors of these toxins that could serve as lead compounds for potential therapeutics, we have developed a simple Vero cell-based high-throughput cytotoxicity assay and have used it to screen approximately 81,300 compounds in 17 commercially available chemical libraries. This initial screen identified approximately 300 compounds with weak (>or=30 to <50%), moderate (>or=50 to <80%), or strong (>or=80%) ricin inhibitory activity. Secondary analysis of 244 of these original "hits" was performed, and 20 compounds that were capable of reducing ricin cytotoxicity by >50% were chosen for further study. Four compounds demonstrated significant dose-dependent ricin inhibitory activity in the Vero cell-based assay, with 50% effective inhibitory concentration (EC(50)) values ranging from 25 to 60microM. The same 20 compounds were tested in parallel for the ability to inhibit ricin's and Stx1's enzymatic activities in an in vitro translation reaction. Three of the 20 compounds, including the most effective compound in the cell-based assay, had discernible anti-toxin activity. One compound in particular, 4-fluorophenyl methyl 2-(furan-2-yl)quinoline-4-carboxylate ("compound 8"), had 50% inhibitory concentration (IC(50)) of 30microM, a value indicating >10-fold higher potency than is the case for previously described ricin-Stx1 inhibitors. Computer modeling predicted that compound 8 is capable of docking within the ricin active site. In conclusion, we have used a simple high-throughput cell-based method to identify several new small-molecule inhibitors of ricin and Stx.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification and characterization of small molecules that inhibit intracellular toxin transport.

Shiga toxin (Stx), cholera toxin (Ctx), and the plant toxin ricin are among several toxins that reach their intracellular destinations via a complex route. Following endocytosis, these toxins travel in a retrograde direction through the endosomal system to the trans-Golgi network, Golgi apparatus, and endoplasmic reticulum (ER). There the toxins are transported across the ER membrane to the cyt...

متن کامل

Inhibition of Retrograde Transport Protects Mice from Lethal Ricin Challenge

Bacterial Shiga-like toxins are virulence factors that constitute a significant public health threat worldwide, and the plant toxin ricin is a potential bioterror weapon. To gain access to their cytosolic target, ribosomal RNA, these toxins follow the retrograde transport route from the plasma membrane to the endoplasmic reticulum, via endosomes and the Golgi apparatus. Here, we used high-throu...

متن کامل

Identification of Small Molecules That Suppress Ricin-Induced Stress-Activated Signaling Pathways

Ricin is a member of the ribosome-inactivating protein (RIP) family of plant and bacterial toxins. In this study we used a high-throughput, cell-based assay to screen more than 118,000 compounds from diverse chemical libraries for molecules that reduced ricin-induced cell death. We describe three compounds, PW66, PW69, and PW72 that at micromolar concentrations significantly delayed ricin-induc...

متن کامل

Ricin Toxin Hits a Retrograde Roadblock

To inhibit protein synthesis and induce cell death, plant ricin toxin and bacterial Shiga toxins enter the cell through the endocytic and retrograde secretory pathways. Stechmann et al. (2010) now identify two small-molecule inhibitors that selectively block endosome-to-Golgi retrieval of ricin and Shiga toxins and protect mice from ricin's deadly effects.

متن کامل

Development of a quantitative RT-PCR assay to examine the kinetics of ribosome depurination by ribosome inactivating proteins using Saccharomyces cerevisiae as a model.

Ricin produced by the castor bean plant and Shiga toxins produced by pathogenic Escherichia coli (STEC) and Shigella dysenteriae are type II ribosome inactivating proteins (RIPs), containing an enzymatically active A subunit that inhibits protein synthesis by removing an adenine from the α-sarcin/ricin loop (SRL) of the 28S rRNA. There are currently no known antidotes to Shiga toxin or ricin, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Toxicon : official journal of the International Society on Toxinology

دوره 56 3  شماره 

صفحات  -

تاریخ انتشار 2010